Time series graphics

1. Time plots
2. Seasonal plots
3. Seasonal polar plots
4. Seasonal subseries plots
5. Lag plots and autocorrelation
Time series graphics

1. Time plots
2. Seasonal plots
3. Seasonal polar plots
4. Seasonal subseries plots
5. Lag plots and autocorrelation
Time plots

`autoplot(USAccDeaths) +
 ylab("Total deaths") + xlab("Year")`
Time series graphics

1. Time plots
2. Seasonal plots
3. Seasonal polar plots
4. Seasonal subseries plots
5. Lag plots and autocorrelation
Seasonal plots

```r
ggseasonplot(USAccDeaths, year.labels=TRUE, year.labels.left=TRUE) + ylab("Total deaths")
```
Seasonal plots

- Data plotted against the individual “seasons” in which the data were observed. (In this case a “season” is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: `ggseasonplot()`
Time series graphics

1. Time plots
2. Seasonal plots
3. Seasonal polar plots
4. Seasonal subseries plots
5. Lag plots and autocorrelation
Seasonal polar plots

```r
ggseasonplot(USAccDeaths, year.labels=TRUE, polar=TRUE) + ylab("Total deaths")
```
Seasonal polar plots

```r
ggseasonplot(USAccDeaths, year.labels=TRUE, polar=TRUE) + ylab("Total deaths")
```

Only change is to switch to polar coordinates.
Seasonal subseries plots

ggsubseriesplot(USAccDeaths) +
ylab("Total deaths")
Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: `ggsubseriesplot()`
Time series graphics

1. Time plots
2. Seasonal plots
3. Seasonal polar plots
4. Seasonal subseries plots
5. Lag plots and autocorrelation
Lagged scatterplots

```r
gglagplot(USAccDeaths/1000, lags=9)
```
Lagged scatterplots

`gglagplot(USAccDeaths/1000, lags=9, do.lines=FALSE)`
Lagged scatterplots

\begin{verbatim}
gglagplot(USAccDeaths/1000, lags=9, do.lines=FALSE)
\end{verbatim}

Each graph shows y_t plotted against y_{t-k} for different values of k.

- Autocorrelations are correlations associated with these scatterplots.
We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k. Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

and

$$r_k = \frac{c_k}{c_0}$$
We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k. Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

and

$$r_k = \frac{c_k}{c_0}$$

- r_1 indicates how successive values of y relate to each other
- r_2 indicates how y values two periods apart relate to each other
- r_k is *almost* the same as the sample correlation between y_t and y_{t-k}.
Autocorrelation

Results for first 9 lags for USAccDeaths data:

<table>
<thead>
<tr>
<th></th>
<th>r_1</th>
<th>r_2</th>
<th>r_3</th>
<th>r_4</th>
<th>r_5</th>
<th>r_6</th>
<th>r_7</th>
<th>r_8</th>
<th>r_9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.707</td>
<td>0.409</td>
<td>0.084</td>
<td>-0.182</td>
<td>-0.294</td>
<td>-0.423</td>
<td>-0.346</td>
<td>-0.285</td>
<td>-0.065</td>
</tr>
</tbody>
</table>

ggAcf(USAccDeaths)

![Autocorrelation plot for USAccDeaths data](chart.png)